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Abstract --This paper presents an application of the spline prism method to analyse vibration of
isotropic. thick circular cylindrical panels with two opposite straight edges simply supported.
Three-dimensional spline prism models are formulated by combining B-spline functions with beam
eigenfunctions. Because of the orthogonality of the beam functions. three-dimensional problems
are reduced to a series of two-dimensional ones. To demonstrate the accuracy and convergence of
the semi-numerical method. the results are compared with those obtained by the 3D-elasticity theory
and by the first-order shear deformation shell theory. Good convergence and accuracy are obtained.
The effects of the ratio of thickness to mean radius. the ratio of length to mean radius and the
shallowness angle on the frequencies of the thick cylindrical shell panels with some boundary
conditions are analysed

I I"iTRODUCf]O"

Open cylindrical shells with thin or thick thickness are frequently used as structural com
ponents of structures and the vibration characteristics of such shells are important for their
design. The problem of cylindrical panels has been analysed by means of thin shell theories
(Petyt, 197 I ; Leissa. 1973; Cheung. 1976; Peng-Cheng ef al.• 1987; Mizusawa. 1988) and
the shear deformation shell theories (Reddy and Liu. 1985; Carrera, 1991). Although
extensive studies have been made of isotropic, thick cylinders based on the 3D elasticity
theory (Mirsky. 1964; Heyliger and Jilani. 1993), the number of available three-dimensional
solutions for isotropic. thick cylindrical panels which have considered all effects such as
shear deformation, rotary inertia. extension of the normals and other kinematic effects is
limited. Soldatos and Hadjigeorgiou (1990) presented an exact solution of simply supported,
circular cylindrical panels based on the 3D-elasticity theory which is a kind of discrete layer
method.

On the other hand. the finite element method. as the most powerful and versatile tool
of solution for the problem of three-dimensional elastic shells and solids. is now well known
and established. the computing costs involved are often of staggering proportions. The
semi-analytical methods known as the finite prism method (Zienkiewicz and Too. 1972)
and the finite layer method (Cheung and Chakrabarti. 1972) based on the 3D elasticity
theory have been developed to reduce the computational requirements of the finite element
method. These three-dimensional finite strip models have been used to analyse vibration of
isotropic and layered, thick plates (Cheung and Chan. 1981; Mizusawa, 1991).

Recently. Mizusawa and Takagi (1993. 1994) analysed vibration of thick rectangular
plates and thick annular sector plates by using the spline prism method which is alternative
of the finite prism method developed by Zienkiewicl and Too (1972).

This paper presents an application of the spline prism method to analyse vibration of
thick circular cylindrical panels with two opposite straight edges simply supported like a
diaphragm condition. To demonstrate the convergence and accuracy of the present method,
several examples are solved. and the results are compared with those obtained by the 3D
elasticity theory and by the first-order shear deformable shell theory. Stable convergence
and good accuracy are obtained using the higher-order spline prism models. The effects of
the ratio of thickness to mean radius. I, Re, the ratio of length to mean radius, L/Re and the
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shallowness angle, rp, on the frequencies of the thick cylindrical panels with some boundary
conditions along the circumferential edges are shown in tabular form.

2. SPLINE PRISM \1ETHOD

In this section, the spline prism method based on the three-dimensional elasticity
theory is formulated by coupling B-spline functions with beam eigenfunctions. The thick
cylindrical panel is modeled by the spline prism elements as shown in Fig. I.

It is convenient to introduce the non-dimensional cylindrical co-ordinate systems

(1)

in which I = R,(Ic~ I), Rc = R,(i.+ ]),2. i, = Ro!Ri• where t is thickness, rp is shallowness
angle and L is length of the cylindrical panel. Ri and Roare inner and outer radii, respectively.

The displacement functions in a prism element are expressed by the product of basic
function series in the cylindrical axis direction and B-spline functions which are known as
piecewise polynomials in the circumferential direction as follows:

,
:d] L [5]~,,,{L1L.

kl

(2)

where {dl = : u. v. W} T is the displacement vector. in which U, V, Ware the displacements
in the r. y. 8-directions, respectively. [L1}, =: {bAli' {bBL, {bcLr are the unknown
coefficients and [5]"", is given by

[Nj"",Z/ 0

[5):.", = 0 [Nj"",Z,

o 0

(3)

where [Al"" = [NIk(~)Nl.k(I}), Nu(~)N2d~]).,,·, Ni,.k(~)Ni\.k(I})], {bAli = {A lh A I2,···,

4"1,T I" 1. -.fB B B" IT is; \. -.'(' C C"}T d' -k-l M. 1,I,j" I(lB)/- I II' 12,"" 1,1,!/, tUC)/- I II. 12,"" 1,1, " an 1,- +"
i, = k - I +M,. Z,(~) and ;l/(0 are the beam eigenfunctions satisfying a given boundary
condition. N",dO and N"k(/}) are the normalized B-spline functions. where k-I is the
degrees of spline functions. and M,. and M, are the number of mesh divisions of prism
elements in the r- and y-directions. respectively.

In the three-dimensional elasticity theory, the strain components are defined in the
non-dimensional co-ordinate system as follows:

r, r; = (r-Rj)It, U

L

Fig. I. Cylindrical thick panel and co-ordinate systems.
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(4)

(5)

where the strain matrix, [B]",,,, of a prism element is defined as follows:

[B];"" = L L (lit)
111= 111= I

V""'\"A Z

()

(l.g)N",., .V,,;,Z;

(f'L)N""lI/",ZI

()

(t L)N", , /V,,;, Z

o

o
o

(1/g¢)NmkN"k2{
o

(Iqi/J)N""N",ZI () iV"lkN"kZ,-(ljg)Nm.kN".kZ/

o (ltg¢)N""N",z, (r!L)Nm.kN".kZ,

(6)

where IVmk = NV",d~) i~, fl.", = (cN"dl])/("I], Z; = iz!(~)a~, 2, = ?Z,(O!a( and 9 = ~ +
1.0/(,1 - I).

The stresses are related to the strains for a three-dimensional cylindrical solid by

[a: = [Dl:I;.

where {a] [araraOrrnfirrr(): I and the elastic matrix becomes

D , D, () 0 0

D, D, () 0 0

D, D, () 0 0
[D] = Do

0 0 0 D: 0 0

0 0 0 () D, 0

0 0 0 () 0 Dc

(7)

(8)

in which D , = 1'/(1-1'), Dc = (I - 2v)!2( I - v). Do = £(1- 1')( 1+ 1')/(1- 21'), where E and
v are Young's modulus and Poisson ratio, respectively.

The strain energy of the isotropic, three-dimensIOnal cylindrical panel is given by

Up = (rcL¢/2) [ 1'1 1'1 :,:I[DHI:: :~+ I (I-I): d~dl]d'
&! () ,,() oJ 1\

= (t"L¢2) ,,: f' I"~ i: f :~:nB],;:,,[D][B];,~:,:~+IU-l)}d~dl]d'
"" (I oJ 0 .. () /= 1 ,= I

'I

=(1/2)L L :~:I[KL:~:"
f,o 1\ !

in which [Klt, is the stiffness matrix which is expressed as follows:

(9)
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The kinetic energy is also written as

T = (pw 2 t2 L1J/2) r
l

r
l

r
l

[u' + V2 + W2 }[¢+ Ij(},-I)} d¢dl1d(
Jo Jo Jo

, q

= (w
2 /2) I I {L1}T[ML,[L1L·

I~ I .\~ I

(10)

(11 )

where [M]" is the mass matrix. and is given by

[ML, =(pt2L¢) 1'1 I~' J'I [S]~;Il[SE{¢+I/(A-I)}d¢dl1d(
~ 0 .. II ()

(12)

in which p is the mass density of the material and w is the circular frequency (rad s -1).
To deal with arbitrary boundary conditions along the two opposite circumferential

edges (11 = l1ic), the method of artificial springs (Mizusawa et al., 1993) is used. According
to this method, four types of springs.:x, P. band}' corresponding to displacements, V, V,
W, cVjcl1, respectively, are introduced at each boundary face of the panel.

The energy contribution. Vh due to these springs is given by

(13)

The functional of the thick cylindrical panel. n is expressed as follows:

(14)

By substituting eqn (2) into eqn (14) and using the principle of minimum potential energy,
the coefficients {L1}, are determined as follows:

'I

('O;c[L1}i = I I ([KL, -o}[MLHflL = o.
1= I .\= 1

The matrices of [KL, and [MJr, are given by

(15)

[K[I]

[KnJ

[Kwil

[Kn1l

[K vw]

[KHWl

[MuuJ

. [ML, = 0

o

o 0]
[M vv] 0

o [Mwwl',

(16)

If the two opposite straight edges are simply supported edges (V = V = aVja( = 0),
the basic functions in eqn (2) can be given by

Z,(() = sin(ln(). Zl(~) = cos (lnO; I = 1,2, ... ,r. (17)

The properties of orthogonality result in matrices which have no coupling between the
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different terms and therefore a term by term analysh can be carned out. Thus, the solution
of the cylindrical panel with the two opposite edges simply supported is given by

( I~)

In eqn (IX). the submatnces nf [Aid and [t/IlJ are presented in the Appendix. The order of
the submatrices is expressed by :; x (A:.. I + .H,) (A: I T :\1,). where A: - I is the degree of
the B-spline functions. and AI and At are the numher nf mcsh divisions in the r- and y
direction. respectively.

A family of prism models can be generated. corresponding to different degrees of B
spline interpolation across a prism. Tn perform the integrations required in determining
[KJ/I and [ML, analytical (full) integration is always used.

, "l\lIRIC.\L FX,\'"lPLIS \"D DISClSSIO:\

Natural freq uencies of isot ropie. thIck clrcular cylll1drical panels are solved to illustrate
the convergence and accuracy of the three-dimensional spline prism method which is an
alternative to the finite prism method. The two opposite straight edges along the v-direction
are assumed to be simply supported and the other t \\0 circumferential edges may be
arbitrary boundary conditions. For the definition of the boundary conditions along the
face of edges. SS-CF. for example. identifies a cylindncal panel with the edges ~ = o. ~ = I.
¢ = 0, ¢ = I having simply supported. simply supported. clamped and free boundary
conditions. respectively A frequency parameter. 1/*= ()I\ (p E) IS used in the calculations
in which t is the thickness of the cylindrical pancl.

Table I shows the comergence study of lhe lirsl SIX natural frequency parameters.
n* = wt~(p E) of simply supported cy lindrical pands (I!J= 45 . L R, = 1.0 and I' = 0.3)
for the different degrees of B-spline functions /\ I and the number of prism elements.
M, = At, .. It is seen that stahle convergence is ohtallled with an increase in the degree of
spline functions and in the numher of pnsm clements The higher-order prism model is
shown to be rapidly convergent Therefore. /.. 11. ,1l1d'vl.= .H, = 10 are used in the
next examples.

Table I. Conn:rgence SlUd\ ,]1 irc411cI1C\ p"r"mder. II' '-J/, Ii' FI ,11 'Impl\ Slirrorted cyl1l1drical shell ranels;
45 . L R = Iii ~lnd, ii,

I R,
(i. = R" R)

0.1
(II (53)

O.-!
(15000)

1/ II 4 6

11.0:9011 I 11.1 -, .,11 11.1 'ISS') iI~4s 17 0.27350 032129
iI.O:ss." 0.1654' 11.195S~ 0.~4s17 0.26763 0.28525

III O.O:sS3~ o 16'~4 0.1 L)5S~ 0.~4817 0.~6751 0.28327
12 Oll'sS30 0.16' 17 11.195S~ 0~4s16 0.26747 0.2s26s

11I1:SS, I II 16'-4 II I')" IJ.24s 17 0.26782 O.~9533

OO:ss~8 o Ih' ] 2 11.1 L)'S 024s 16 O~6743 0.2s236
III OO:SS~- o Ih' ] ~ III 'I', 0.~4s 15 0.~6743 O~8225

I .. OO:s8~- o Ih' ] 2 II I L):iS 0.~4s 14 0.26743 O~S223

..: 0-834, 114L)~ 1.1 2XXII 1.4071 1.6597 l.s848
11."s~94 1I.L)9~ 12 2X t (, I 1<)07 1.6582 1.8666

Iii II cX~9~ O.94~ 1~ l2~7h I ,403 1.6581 1.8662
12 II. -8~91 II 9()~11 2~ 1(1 ! lL)O~ 1.6581 Is660

Il,~X2q= Ii 9')~ I 2~~1i '913 165s 1 Is675
II. "S~91 liL)9~ I 2~1(, 1900 1.65s I Is659

Ii) II. 'S291 o '!')~ ] \ 2~itl <900 J .65s I 1 865Y
12 II. "8291 1i.49~ I i 2x :(1 <900 1.65s 1 Is659
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To demonstrate the accuracy of the present method, the first four natural frequency
parameters, n* = wL...; {pC I - \,)! E} of a simply supported cylindrical panels are compared
with those calculated by the analytical method based on 3D-elasticity theory (Soldatos et
al.. 1990) in Table 2. It is seen that excellent agreement is obtained.

Table 3 shows the effect of (R, on the first six frequency parameters. n* = wt.J(p/E)
of simply supported cylindrical panels (¢ = 45 . LiRe = 1.0 and r = 0.3). The ratio of
thickness to mean radius. t R, varies from 0.05 to 0.4. The results are also compared with
those calculated by the spline strip method (Mizusawa et al., 1994) based on the first-order
shear deformable Sanders' shell theory. It is observed that for small ratio of thickness to
mean radius, tR,. both approaches yield a good agreement. The discrepancy began to
widen as the thickness increased. This is attributed to the effect of thickness direction such
as high-order shear deformation and thickness deformation to be essential to thick shells.

Table 4 shows the effect of shallowness angle, ¢ on the first six frequency parameters,
n* = wt.J(p/E) of simply supported cylindrical thick panels (UR, = 1.0, ic = 1.2222 and
\' = 0.3). The angle of ¢ varies from 30 to 90 . The present results are compared with those
obtained by the spline strip method (Mizusawa et al., 1994) based on the first-order shear
deformation shell theory. To evaluate the adaptability of the first-order shear deformable
Sanders' shell theory for thick cylindrical panels, the ratios of t!Land tI B are presented in
the table. It is found that the frequency parameters depend on the thickness parameters of
t/ Land t! B, which are ratios of thickness to panel length and thickness to cylindrical panel
width, respectively. The larger val ue of the thickness ratio is a dominate parameter to assess
the accuracy and reliability of sol utions obtained by shell theories.

Table 2. Comparison of the natural frequcncles. 1/* ,~ "'L.y :f!11 + 1')'1:;: of simply supported circular cylindrical
panel: \ = 0.3

Modes

cP l LR I R, R R I ! 1st 2nd 3rd 4th
- --------~~~--~---

30 O.51763S 0.1 1.1 05261 1.11931 S5 1.20328 3.14682 5.25541 5.76108
1.20325t 3.146S2 5.25539 5.76102

0.3 U52941 1.1579556 2.21292 3.14991 4.62052 5.00861
2.21292t 114991 4.62052 5.00858

60 10 (II 1 105263 I) I 080964 3.15331 5.23679 5.78461
080963t 3.15331 5.23675 5.78457

1.11 U52041 11.1 1.52806 3.16159 511234 5.56169
1.52805t 3.16159 5.11234 5.56168

90 IAI4214 11.1 I 105263 11070711 0.89466 3.15294 5159S4 5.78911
0.89464t 3.15292 5.15983 5.78907

11.1 U52941 u.212IJ~ 121998 3.15903 5.09827 5.57240
1.21997t 3.15903 5.09826 5.57237

t The results are calculated by Soldal,)s and Hadllgeorglou (1990) using the analytical method.

Table 3. The effect of I R on the first 'IX lreLjuenL'y parameters, 1/* = "iT" (pEl of Simply supported cylindrical
panels. Ii' 45. L R, = 1.0 and \' = 0.3

Mode
r R,

(i = R, R) Theor\ 4 6

00:" I D-e1asticity 111I2:i80.' IIO:i311.' 0053635 0.0759SO 0.086038 0.10829
(105111 FSOT Sanderst II02:is 14 111153193 11.053230 0.075857 0.086062 0.097399

0.1 3D-elasticity 1J.()"7xx27 11.16512 o 19552 0.24815 0.26743 0.28225
II 10531 FSDT Sanderst II07S696 0.1649.' 0.19462 0.19469 0.26561 0.28131

0.2 'D-elasllcity 112f> 12:" IIA9675 0.51400 0.62920 0.64313 0.81546
1122221 FSDT Sanders+ ll. 2.':; X~2 O.IS854 0.51142 0.6183S 064502 0.77704

OA I D-c1asllci ty 0. :~:2q 1 11.99212 1.2876 1.3900 1.6581 1.8659
11.50(0) FSDT Sanders t 11 7 :"7:"4 11.77049 13031 1.3533 1.5400 1.6059

+ FSDT Sanders IS the first-order shcar dl'!ormable Sander; shell theory ("Vlizusawa el "I .. 1994).
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Table 4 The eflect of shallowness angle. </J on the frequency parameters. 1/* = (;JI.j(p!£) of simply supported
cylindrical panels: L R, = 10. 1 R. = O.~. i = 1.~~22 and \' = 0.3

d'

30

45

60

90

\10de

1 L / B 4 6

O~ IU8~ .1D-elaSlJcity 0.4~47 Oh44-, 07447 08472 09454 1.0862
FSDT Sanders'~ (1.1885 0.4184 0.6-'44 0.7770 0.8492 0.9299

O~ 0~5' -' D-elasticity 0.~6n 0..1'16'1 05140 0.629~ 0.6431 0.8155
FSOT Sandcrs+ 0.~585 tUXX' 0'1114 0.6184 0.6450 0.7770

O~ o IlJO 3D-elasticity 0.2101 0.17~6 OA~47 04741 0.5537 0.6443
FSOT Sandcrsi' 0.~089 tUX~' 0...1184 04713 0.5553 0.6344

O~ o 1~7 .1D-elasticity O. ]931 0.~4~5 11.161-' 04247 0.4470 0.4768
FSDT Sanders+ o ]93~ 0.2585 11.1885 0.4184 0.4461 0.4778

+ FSDT Sanders IS the first-order shear deformable Sander; shell cheory I \1i/usa"a ('I al., 1994).

Table 'i. The cffect of 1. R, on the lirst SIX frequency parameter, 1/* "J/, (I' E) of SImply supported cylindrical
panels </J = 4'1 . 1 R, = O.~ and / 1 2222 and \ = 11.1

\10de
--_.,-_._._----~-

L R Thel)]"\ 4 6

3D- F lastICin 0..1'1676 099224 1201 ] 1..1030 1.4852 1.6381
025 FSDT Sanders+ 1 18~3 13741 ],5",l,k 16-''18 1.6667 1.8550

3D-ElastIcity 0...1'167' 1l.'i1640 II.~ 1'46 (J'!1198 0.99224 1.2011
0.5 FSDT Sanders+ 0"114~ 077704 11.~1)034 0'13371 11823 1.2022

3D-ElastIcity 0~61 ~'i 114967(, il.' 140U (J629~O 0.64313 0.81546
1.0 FSDT Sanders'c 0.~585~ 1)38854 II"] 142 061838 064502 0.77704

., D- Elastici t\ o 18440 0261 ~, 1768.1 OAlJ674 051661 0.54009
~O FSDT Sandcrs+ o 18277 o 19427 II ~'X52 Il ln26 038854 051142

3D-Elasticity o 166300 ill844ii 021hh4 O.21d 36 031611 0.38062
4.0 FSDT Sanders+ 0.1ll)7136 il1644~ II 182~c (1 1)427 0.21421 0.25852

+ FSDT Sanders IS the first·order shear deformable Sander; sheiliheury (MiLLlsawa el ul.. 1994).

Table 5 shows the effect of L; R, on the first SIX frequency parameters of simply
supported cylindrical panels (¢ = 45 . t R, = 0.2. ;. = 1.22222 and \' = 0.3). The results are
also compared with those obtained by the spline strip method (Mizusawa et al., 1994) based
on the first-order shear deformable Sanders' shell theory. It is observed that the results
calculated by the two approaches show a difference due to the assumptions of a simply
supported boundary condition. The discrepancy of the frequency parameters calculated by
the two approaches shows for larger (Li K > 2.0) or shorter (L R, < 0.5) cylindrical panels.

Table 6(a--d) shows the first six frequency parameters. 11* = wt,j(p!El of thick cyl
indrical panels with different shallowness angles. ¢ and t R,. having boundary conditions
of SS-Cc. SS-SS. SS-CF and SS-FF. respectively. The angle of ¢ varies from 30e to 90',
and t:Re of O. I. 0.2 and 0.4 are used. It is observed that the frequency parameters increase
with increment of t. R,. and decrease with an increase in the shallowness angles. This is
attributed to the effect of thickness of cylindrical panels associated with the influence of
shear deformation. thickness deformation and in-plane inertia

Lastly. Table 7 shows the effect of Poisson ratio. I'. on the first six frequency parameters,
n* = wi y (pi El ofcylindrical panels (cP = 4S . t R= () 2. L R.= 1.0 and ;. = 1.22222) with
some boundary conditions. Poisson ratios of v = 0.0, 0.15 and 0.3 are used. The frequency
parameters decrease with increment of Poisson rallo. and the effect of Poisson ratio on the
frequency parameters is significant for the cylindncal panel with free edges.

This paper presents an application of thc splJl1e prism mcthod based on the 30
elasticity theory to analyse the fre\.]uencies oj" IsotropiC. circular cylindrical thick panels
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Table 6. The first SIX frequency parameters. 11* = WI...; (pi £) of cylindrical thick panels with some boundary
conditions along the circumferential edges; LIR, = 1.0 and v = 0.3

(a) SS-CC

Mode
I;R,
(i. = R,,;R,j (b l I L IB 2 4 5 6
--~.

0.1 30 0.191 0.1398 0.2349 0.3610 0.3795 0.4471 0.4506
(!.l053) 60 0.1 0.095" 0.09254 0.1398 0.1935 0.2349 0.2436 0.3188

90 0.0637 0.09557 0.09976 0.1398 0.1901 0.2016 0.2046

0.2 30 0.382 0.4533 0.6917 0.9049 0.9941 1.096 !.l55
(1.2222) 60 02 0.191 0.2741 0.4533 0.5549 0.6857 0.6917 0.7276

90 0.127 0.2609 0.3134 0.4533 05382 0.5788 0.5853

0.4 30 0765 1.240 1.687 1.844 2.202 2.360 2.580
(1.5000) 60 0.4 0382 0.7346 1.240 1.327 1.412 1.418 1.687

90 (U55 0.6675 0.8645 1.148 1.240 1.297 1.323
---- --,---,,-,-".'.__. ------~ .._--~~,_ •. "

(b) SS-SS

Mode
I;R,
(i. = R,,;R,) (j~1 I L IB 2 4 6

------"-- _.- .._-------

0.1 30 0191 0.1258 0.2053 0.3211 0.3722 0.3757 0.4232
(!.l053) 60 0.1 0.0955 0.07099 0.1258 0.1546 01861 0.2053 0.2366

90 0063 7 0.07740 0.07883 0.1241 0.1258 0.1497 0.1651

02 30 (1.'82 0.4247 0.6443 0.7447 0.8472 0.9454 1.086
(1.2222) 60 02 0191 02101 0.3726 0.4247 0.4741 0.5537 0.6443

90 0.127 o 1931 02485 0.2613 0.4247 0.4470 0.4768

0.4 30 0764 1.198 1.476 1.680 1.685 2.166 2.312
(1.500) 60 0.4 0382 06233 07463 1.110 1.198 1.287 1.476

90 025' 0.4986 0.5298 0.7829 0.9560 0.9921 1.198

(c) SS-CF

Mode
- -- --------.

(i = R" R,) (l' I L ! S 4 6
~-------

0.1 30 o 19 I o 1042 0.1586 0.2557 0.3485 0.3569 0.3826
(1.1053) 60 OJ 0.0955 0.03851 0.1042 0.1070 0,1586 0,2036 0.2080

90 0.0637 004078 0.05208 0.1042 0,1087 0.1154 0.1586

0.2 30 0.182 0.1601 0.5033 0.6986 0,7630 0.9932 1.043
(1.2222) 60 0.2 0.191 01224 03100 0.3601 0.4225 0.5034 0.6013

90 0127 0.09827 0.1842 0.2914 0.3555 0.3589 0,3601

0.4 30 (U64 1.043 1.266 1.494 1.834 2.013 2.292
(1.5000) 60 0.4 0.382 0.3887 0.7612 0.9377 1.043 1.235 1.266

90 0.255 0.2650 0.5833 0.6875 0.7975 0.8958 0.9338

(d) SS-FF

Mode

(i. = R",R) rp I L IS 2 4 6

0.1 .'0 0.191 0.09717 0.1152 0,1780 0.2741 0,3291 0.3818
(!.l053) 60 0.1 009:'5 0.02218 0.03448 0.09717 0.1152 0.1227 0.1533

90 0.0(',17 0,007896 0.01385 0.04212 0,05789 0.09717 0.1092

0.2 30 (1..'82 0.3404 0.3910 0.5581 0.6530 0.7770 0.8266
(1.2222) 60 0.2 0.191 0.08509 01242 0.3150 0.3404 0.3626 0.3910

90 0.12~ 0.03090 0.05028 0.1573 0.2059 0.2264 0.3289

0.4 30 0.764 1.007 1.072 1.348 1.372 1.672 1.965
(1.50(0) 60 0.4 (U82 0.3021 0.3709 0.6883 0.9791 1.007 1,072

90 0.2<:' 0.1169 0.1551 0.4997 0.5224 0,6011 0.8254
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Table 7 The elfect of POIsson ratio ... on frequency parameter. 11* = "11,(1'1:) of cylIndrical panels; ¢ = 45 ,
r R = 10. I R, = 02 and I 12222

Mode
Boundary
conditions 4 6

.~~_.~~--

SS-FF Ol! II.IX 100 o 253X2 o49,~2'1 0.52748 0.65390 0.72708
o I' 11.171>1).1 O.2.i880 0471 Xl) 0.49479 0.62921 0.69109

OJ II 1."29 0.20589 041214 O.422X9 0.55618 0.60113

SS-55 Oil II 29X64 059975 06'-1'; 073323 0.84988 0.96003

0.1 ' 1)29015 o 57gBI> o '961' 070629 0.77159 0.92083
11.1 1)2(,125 0.49676 0'141)0 0.62920 0.64313 0.81546

SS-CC (UI IUM26 069743 O,qlN 094170 10096 1.0456
(II 5 IU5196 066496 O_:2)'~ O.X718 7 0.96264 0.99847
01 IUI\40 0.58529 0.M4'11 o7420X 0.84703 0.88314

with the two opposite straight edges simply supported and the other two of some boundary
conditions. The effects of ratIo of thickness to radius. I R,. ratio of length to radius, L/R,
and shallowness angle. ~6 on the frequency parameters are analysed, and the results are
compared with those calculated by the analytical method based on the 3D-elasticity theory
and by the spline strip method based on the first-order shear deformable Sanders' shell
theory.

The main conclusions of the present work can he ,ummarized as follows:

(I) The higher-order spline prism models shov\ the highest efficiency on the rapid
convergence of frequencies.

(2) The freq uency parameters of the circular cy hndrical panels are dependent on the
ratios of t R. L Re • (t) and boundary conditions

(3) The present method can be used to predict the frequencies of both thick and thin
circular cylindrical panels.

(4) The results predicted by the first-order shear deformable Sanders' shell theory are
limited in use by the ratios of 1> and L R of thick cylindrical panels.

(5) The frequency parameters of circular cylindrical thick panels with some boundary
conditions are presented In tabular form. and can serve to validate other methods
and finite element models.
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APPENDIX

The sub-matrices in eqns (1X) are gl\en 'IS rollows

[K,,] = (L¢D,,): D, (t LI/::" .I,,'," 4, +D, (t L)I,::~".I,,'," A, +D, (tIL)I,:,?' J,::' A,}

[K, ,,] = (LcjJD,.): D, If I II I (fill,,',''''],,','' 4 ,+ D,( I i¢)(t/ L)r.:'?"J,::' A,:

and

[M,,] = (pI'L'!II:

in which the integrals I,;::' and J;" are ddined 'IS

('I ('1

1"'( = I '1/''' ( "1 V'" { "') 'I (i -1)" d·' J'" = IN'>} (,,)N'U'(,,) d"
'Ii! . ;'".4 ':- : I','" - T ,. J~' 11.I II.!>. 'I 11.'" " 'p

.. <: .., (I

where I and 11 are the orderderivcltives or \. I~J and N",(IlI. and Cis the order of :(+ 1.'(i.-l)}. Aiis also given
by

1/;,): 4, = A, = -lIT and A 4 = 4, = lIT.


