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Abstract--—-This paper presents an application of the spline prism method to analyse vibration of
tsotropic, thick circular cylindrical panels with two opposite straight edges simply supported.
Three-dimensional spline prism models are formulated by combining B-spline functions with beam
eigenfunctions. Because of the orthogonality of the beam functions. three-dimensional problems
are reduced to a series of two-dimensional ones. To demonstrate the accuracy and convergence of
the semi-numerical method. the results are compared with those obtained by the 3D-elasticity theory
and by the first-order shear deformation shell theory. Good convergence and accuracy are obtained.
The effects of the ratio of thickness to mean radius, the ratio of length to mean radius and the
shallowness angle on the frequencies of the thick cylindrical shell panels with some boundary
conditions are analysed.

I INTRODUCTION

Open cylindrical shells with thin or thick thickness are frequently used as structural com-
ponents of structures and the vibration characteristics of such shells are important for their
design. The problem of cylindrical panels has been analysed by means of thin shell theories
(Petyt, 1971 ; Leissa, 1973 Cheung, 1976 ; Peng-Cheng er «l., 1987 : Mizusawa, 1988) and
the shear deformation shell theories (Reddy and Liu. 1985; Carrera, 1991). Although
extensive studies have been made of isotropic, thick cylinders based on the 3D elasticity
theory (Mirsky. 1964 ; Heyliger and Jilani, 1993), the number of available three-dimensional
solutions for isotropic, thick cylindrical panels which have considered all effects such as
shear deformation, rotary inertia. extension of the normals and other kinematic effects is
limited. Soldatos and Hadjigeorgiou (1990) presented an exact solution of simply supported,
circular cylindrical panels based on the 3D-elasticity theory which is a kind of discrete layer
method.

On the other hand. the finite element method. as the most powerful and versatile tool
of solution for the problem of three-dimensional elastic shells and solids, is now well known
and established, the computing costs involved are often of staggering proportions. The
semi-analytical methods known as the finite prism method (Zienkiewicz and Too, 1972)
and the finite layer method (Cheung and Chakrabarti, 1972) based on the 3D elasticity
theory have been developed to reduce the computational requirements of the finite element
method. These three-dimensional finite strip models have been used to analyse vibration of
isotropic and layered, thick plates (Cheung and Chan. 1981 ; Mizusawa, 1991).

Recently, Mizusawa and Takagi (1993, 1994) analysed vibration of thick rectangular
plates and thick annular sector plates by using the spline prism method which is alternative
of the finite prism method developed by Zienkiewicz and Too (1972).

This paper presents an application of the spline prism method to analyse vibration of
thick circular cylindrical panels with two opposite straight edges simply supported like a
diaphragm condition. To demonstrate the convergence and accuracy of the present method,
several examples are solved. and the results are compared with those obtained by the 3D
elasticity theory and by the first-order shear deformable shell theory. Stable convergence
and good accuracy are obtained using the higher-order spline prism models. The effects of
the ratio of thickness to mean radius. 1/ R, the ratio of length to mean radius, L/R. and the
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shallowness angle, ¢. on the frequencies of the thick cylindrical panels with some boundary
conditions along the circumferential edges are shown in tabular form.

2. SPLINE PRISM METHOD

In this section, the spline prism method based on the three-dimensional elasticity
theory 1s formulated by coupling B-spline functions with beam eigenfunctions. The thick
cylindrical panel is modeled by the spline prism elements as shown in Fig. 1.

It is convenient to introduce the non-dimensional cylindrical co-ordinate systems

S=0—R)t, n=yvL (=0j¢ (1)

in which 1 = R(~—1), R. = R(/+1):2, 4 = Ry/R,, where ¢ is thickness, ¢ is shallowness
angle and L is length of the cylindrical panel. R; and R, are inner and outer radii, respectively.

The displacement functions in a prism element are expressed by the product of basic
function series in the cylindrical axis direction and B-spline functions which are known as
piecewise polynomials in the circumferential direction as follows:

P

:d} = Z [S]LW{A}/" (2)

=1

where {d] = | U. V', W} is the displacement vector, in which U, V, W are the displacements
in the r, y. O-directions, respectively. (A}, = {{0a}, {0s}s {Oc},}’ are the unknown
coefficients and [S],,, is given by

[N L2, 0 0
[S‘]f”" = 0 ["V]nmzl O k] (3)
0 O [N]an—/

where [N],,, = [N (N wn). N (N ..., Ni, ()N ()], 0a)r= {40, Aips-..s
Aii [ 10}, = {Bi, Bi... Bii,}], 3¢}, =1Ch. Cpa...,Cii}/, and i,=k—14+M,,
i, =k—14+M,. Z(%) and Z(&) are the beam eigenfunctions satisfying a given boundary
condition. N, (&) and N, () are the normalized B-spline functions, where k—1 is the
degrees of spline functions, and M, and M, are the number of mesh divisions of prism
elements in the r- and y-directions, respectively.

In the three-dimensional elasticity theory, the strain components are defined in the
non-dimensional co-ordinate system as follows :

r.&=(r-R)/t, U

Fig. 1. Cylindrical thick panel and co-ordinate systems.
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where the strain matrix, [B],,. of a prism element is defined as follows:

T ONLNLZ 0 0 )
0 (1 YN, N, Z, 0
i . ( l o ‘/\’vm ‘Vn./\ Z 0 ( l '/. Nm NH. Z
[B],/m, _ Z Z (/) “I) , A i / o GPIN,, kN i
m=1n=| (f'L)A’”,_A ;’\’,,_,; Z/ ,’\’,,,_/\ ;\’,,_;\ 7z, 0
( I .(/(;b)l)v,,,_;\ jvu_/\ ZI 0 ‘]\;’m_l\ ‘)Vn_A Z_/ - ( 1 //g)Nnr,k NnJ\'Z-/
() ( l.”g¢)‘/\;m.k ‘\;rv IS Z/ (r//L)‘ mk .n.kZ_I J
(6)

where N, . = eN,(3) CE N,y = CN(n)itn. 2, = (24000, 2= ¢Z/()/éC and g = ¢+
1.0/(A—1).
The stresses are related to the strains for a three-dimensional cylindrical solid by

(o) = [Dl]ie). 0]

where {g} = {orovabtrytdrtyd)’ and the elastic matrix becomes

1D, D0 0 0]
‘D, 1 D000
Dl D, } D, D, 1 0 0 0 )
L0 0 Do 0 0
0 0 0 D, 0
0 0 0 0 0 D.|

in which D, = v/(1 —v). D, =(1 =2v);2(1 —v). Dy = E(1 —v):(1 +v)/(1 —2v), where E and
v are Young’s modulus and Poisson ratio, respectively.
The strain energy of the isotropic, three-dimensional cylindrical panel is given by

[ |
U, = ("L¢/2) [ ‘ D) e S+ (s — 1y didndS

JO JO JU

P, p
= (’L$2) [ ‘ Y 2 A [BLLIDIBL AL S+ (A= 1)) dEdnd]
Joo! vl

e
JO Jo =1

(1Y Y ALK AL ©

in which [K], is the stiffness matrix which is expressed as follows :
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(K] = (PLé) j [, || rapien e+ 1100} azanag (10)

0

The kinetic energy is also written as

1 1 t
Tz(pwztzLd)/Q)J J J U+ 12+ W {E+ 1/ (A— D)} dédndl
¢} 0

0

- porLo| | J Y 3 (AMISTLISTAAL [+ 1/G— 1)} dedndg

0

(@2 Y Y {AVMLIA}. )

I=14s=1

where [M],, is the mass matrix, and is given by

fLr

(M}, = (o1 L$) J (STE[ST, (€ + 1/ — 1)} dE dn g (12)

JO

in which p is the mass density of the material and w is the circular frequency (rad s™').

To deal with arbitrary boundary conditions along the two opposite circumferential
edges (n = 5i.), the method of artificial springs (Mizusawa et al., 1993) is used. According
to this method, four types of springs, «, f, 6 and y corresponding to displacements, U, V,
W, éU/cn, respectively, are introduced at each boundary face of the panel.

The energy contribution. U, due to these springs is given by

Nomm
Up =(¢17/2) ). J J (U7 + [V + 0W? + 53U }{E+ 1/(A— 1)} dEdL|n = ..
=1J0 Jo

(13)
The functional of the thick cylindrical panel. IT is expressed as follows :
N=U,+U,—T (14)

By substituting eqn (2) into eqn (14) and using the principle of minimum potential energy,
the coefficients {A}, are determined as follows :

AT = 3 Y ((K]y— w0 (M]){A}, = 0. (15)

I=1s=1

The matrices of [K], and [M],, are given by

(Kol (Kool [Kiwld (M0 0 0
Kl =| K] [Kin]l [Kew]|. [M],= 0 [MVV] 0 . (16)
(Ku) [Kur] [Kiw] s 0 0 (Ml lis

If the two opposite straight edges are simply supported edges (U = V = 0V/d{ = 0),
the basic functions in eqn (2) can be given by

Z,($) = sin(ind). Z/({) =cos(inl); 1=1,2,....r. (17)

The properties of orthogonality result in matrices which have no coupling between the
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different terms and therefore a term by term analysis can be carried out. Thus, the solution
of the cylindrical panel with the two opposite edges simply supported is given by

N (K], o [M])A =0 (18)

In eqn (18). the submatrices ol [K},] and [M,,] are presented in the Appendix. The order of
the submatrices is expressed by 3 x (k- 1+ M,) x (k| + M ). where A — 1 is the degree of
the B-spline functions. and M and M are the number of mesh divisions in the r- and y-
direction, respectively.

A family of prism models can be generated. corresponding to different degrees of B-
spline interpolation across a prism. To perform the integrations required in determining
[K], and [M],. analytical (full) integration is always used.

LNUMERICAL EXAMPLES AND DISCUSSION

Natural frequencies ol isotropic. thick eircular cylindrical panels are solved to illustrate
the convergence and accuracy of the three-dimensional spline prism method which is an
alternative to the finite prism method. The two opposite straight edges along the y-direction
are assumed to be simply supported and the other two circumferential edges may be
arbitrary boundary conditions. For the definition of the boundary conditions along the
face of edges. SS-CF, for example. identifies a cvhindrical panel with theedges ¢ = 0. ¢ = 1,
&=0, =1 having simply supported. simply supported. clamped and free boundary
conditions. respectively. A frequency parameter. #* = o/ (p E) 1s used in the calculations
in which ¢ is the thickness of the cylindrical panel.

Table 1 shows the convergence study of the first six natural frequency parameters,
n* = ot/ (p: £) of simply supported cyvlindncal panels (¢ =45 . L R = 1.0 and v =0.3)
for the different degrees of B-spline functions. A -1 and the number of prism elements,
M, = M. Itis seen that stable convergence is obtained with an increase in the degree of
spline functions and in the number of prism elements. The higher-order prism model is
shown to be rapidly convergent, Therefore. A -1 = 3. und M, = M, = 10 are used in the
next examples.

Table 1. Convergence study of irequency parameter. 7% = s (p £ ot simply supported cylindrical shell panels ;
e A4S LR = 10uandy o+ 03

Mode
IR ——
(~.= R, R) Aod V/ \/ ] 2 3 4 5 6
N 1 0.079001 0.17523 119389 0.24817 0.27350  0.32129
0.1 N 0.078837 (.16543 0.195K82 0.24817 0.26763 0.28525
(1.1053) 10 ().078832 0.16524 0. 19582 0.24817 0.26751 0.28327
P2 0.078830  0.16517 0. 19382 0.24816 0.26747  0.28268
3 i (TR 016574 0 1Y3N2 0.24%817 0.26782 (0.29533
S O.NTRE2R 0.16512 0. 19382 (.24816 0.26743 0.28236
10 0.0TRE2T 016512 019382 (.24%15 0.26743 ().28225
i 007827 016512 019382 (124814 0.26743 (.28223
2 4 0.78343 0992132 P 28RU 1 4071 1.6597 1.8848
0.4 h 0.78294 0.99212 PANT6 1.3907 1.6582 1.8666
(1.5000) 10 0.78292 099242 P2876 1.3903 1.6581 1.8662
12 11,7824 099211 HRE 1 3902 1.6581 1.8660
N ) 1.7%292 099212 PONTG (RN 1.65&1 1.8675
N U,7829] 099212 ] 2NT6 13900 1.6581 1.8659
1 1.78291 [UCDARI }2NTO 1 3900 1.6581 1.8659
P2 1,7829] (099212 i 2NTO 1 3900 1.6581 1.8659
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To demonstrate the accuracy of the present method. the first four natural frequency
parameters, n* = wL\/ {p(1 —v)/E} of a simply supported cylindrical panels are compared
with those calculated by the analytical method based on 3D-elasticity theory (Soldatos et
al.. 1990) in Table 2. It is seen that excellent agreement is obtained.

Table 3 shows the effect of 7 R, on the first six frequency parameters. n* = wi/(p/E)
of simply supported cylindrical panels (¢ =45 . L/R. = 1.0 and v = 0.3). The ratio of
thickness to mean radius. ¢’ R, varies from 0.05 to 0.4. The results are also compared with
those calculated by the spline strip method (Mizusawa er al., 1994) based on the first-order
shear deformable Sanders’ shell theory. It is observed that for small ratio of thickness to
mean radius, 1/R,, both approaches yield a good agreement. The discrepancy began to
widen as the thickness increased. This is attributed to the effect of thickness direction such
as high-order shear deformation and thickness deformation to be essential to thick shells.

Table 4 shows the effect of shallowness angle, ¢ on the first six frequency parameters,
n* = wt/(p/E) of simply supported cylindrical thick panels (L/R, = 1.0, 2 = 1.2222 and
v = 0.3). The angle of ¢ varies from 30 to 90 . The present results are compared with those
obtained by the spline strip method (Mizusawa et al., 1994) based on the first-order shear
deformation shell theory. To evaluate the adaptability of the first-order shear deformable
Sanders” shell theory for thick cylindrical panels, the ratios of t/L and ¢/ B are presented in
the table. It is found that the frequency parameters depend on the thickness parameters of
t/L and ¢/ B, which are ratios of thickness to panel length and thickness to cylindrical panel
width, respectively. The larger value of the thickness ratio is a dominate parameter to assess
the accuracy and reliability of solutions obtained by shell theories.

Table 2. Comparison of the natural frequencies. n* = Ly (pt]+v)/E) of simply supported circular cylindrical
P q vk | ply supp

panel: v = 0.3
Modes

' LR i R R R 1L Ist 2nd 3rd 4th
30 0.51763% 0.1 1.105263 11.1931%5 1.20328 3.14682 5.25541 5.76108
1.20325% 3.14682 5.25539 5.76102
0.3 1.352941 1).379556 2.21292 3.14991 4.62052 5.00861
221292+ 3.14991 4.62052 5.00858
60 1.0 0.1 1.105263 0l 0.80964 315331 5.23679 5.78461
0.809631 315331 5.23675 5.78457
0.3 1.352941 0.2 1.52806 316159 S.11234 5.56169
1.52805% 316159 511234 5.56168
90 1.414214 N 1103263 0.070711 0.89466 3.15294 5.15984 5.78911
0.89464% 3.15292 5.15983 5.78907
0.3 1.352941 0212132 1.21998% 3.15903 5.09827 5.57240
1.21997+ 315903 5.09826 5.57237

+ The results are caleulated by Soldatos und Hadpgeorgiou (1990) using the analytical method.

Table 3. The cffect of 7 R on the first six requency parameters, #* = oy (p-E) of simply supported cylindrical
panels: ¢ =45 L R = 1.0and v =03

Mode
IR, e e e s o ————————————
(~.=R_R) Theory | 2 3 4 S 6

0.05 AD-elasticity (LO2S805 0083135 0.053635  0.075980  0.086038  0.10829
(1.0513) FSDT Sanderst 0.023%14 0.053193  0.053230  0.075857  0.086062  0.097399

0.1 ID-elasticity 0.078%27  0.16512 0.195%2 0.24815 0.26743 0.28225
(1.1053) FSDT Sanderst 0078696 0.16493 0.19462 0.19469 0.26561 0.28131

0.2 ID-elasticity 0.26125 0.49675 0.51400 0.62920 0.64313 0.81546
(1.2222) FSDT Sanderst 025832 (.38854 0.51142 0.6183% 0.64502 0.77704

0.4 ID-elasucity 078291 0.99212 1.2876 1.3900 1.6581 1.8659
(1.5000} FSDT Sanderst 0.75734 0.77049 1.3031 1.3533 1.5400 1.6059

+ FSDT Sanders s the first-order shear deformable Sanders™ shell theory (Mizusawa er «l.. 1994).
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Table 4. The effect of shallowness angle, ¢ on the frequency parameters. #* = wir/(p/E) of simply supported
cylindrical panels: £ R = 1.0. ¢ R =02., =12222and v = 0.3

Mode
¢ L 1B | 2 3 4 5 6
30 0.2 0.382  3D-clasticity 0.4247 ().6443 0.7447 0.8472 0.9454 1.0862
FSDT Sanders* 0.3885 04184 0.6344 0.7770 0.8492 0.9299
45 0.2 0.255  3D-elasticity 0.2613 0.4969 0.5140 0.6292 0.6431 0.8155
FSDT Sanders* 0.2585 (.38K S 05114 06184  0.6450 0.7770
60 0.2 0.190  3D-elasticity 0.2101 (1.3726 0.4247 0.4741 0.5537 0.6443
FSDT Sanders* 0.2089 (1. 38KS 0.4184 04713 0.5553 0.6344
90 0.2 0127 3D-elasticity 0.1931 ).24K5 0.3613 0.4247 0.4470 0.4768
FSDT Sanderst 0.1932 1.25KS 0.3885 0.4184 0.4461 0.4778

T FSDT Sanders is the first-order shear deformable Sanders’ shell theory (Mizusawa et al.. 1994).

Table 5. The effect of /. R, on the first six frequency parameters #* = o1 (p E) of simply supported cylindrical
panels: ¢ =45 'R =02and /. = [ 2222and v = 0.3

Mode
L R Theon | 2 2 4 5 6
ID-Elasticity 0.49676 0.99224 1.2011 1.4030 1.4852 1.6381
0.235 FSDT Sanderst 1.1823 1.3741 1883y 1.6358 1.6667 1.8550
3D-Elasticity 0.49675 0.51640 %1346 093198 0.99224 1.2011
0.5 FSDT Sanders* 0.51142 0.77704 .80 34 0.93371 1.1823 1.2022
3D-Elasticity 0.26125 0.49676 (31400 0.62920 0.64313 0.81546
1.0 FSDT Sanders+ 0.25852 1).38%54 31142 0.61838 0.64502 0.77704
ID-Elasticity 0.18440 0.26125 037683 0.49674 0.51661 0.54009
2.0 FSDT Sanders* 018277 0.19427 0.23x52 0.27326 0.38854 0.51142
ID-Elasticity 0166300 0. 18440 021664 0.26136 0.31611 0.38062
4.0 FSDT Sanders+ 0097136 0.16442 018227 0.19427 0.21421 0.25852

+ FSDT Sanders 15 the first-order shear deformable Sanders™ shell theory (Mizusawa e al.. 1994).

Table 5 shows the effect of L;R on the first six frequency parameters of simply
supported cylindrical panels (¢ =45 , /R =0.2., = 1.22222 and v = 0.3). The results are
also compared with those obtained by the spline strip method (Mizusawa et al., 1994) based
on the first-order shear deformable Sanders® shell theory. It is observed that the results
calculated by the two approaches show a difference due to the assumptions of a simply
supported boundary condition. The discrepancy of the frequency parameters calculated by
the two approaches shows for larger (L/R. > 2.0) or shorter (L R < 0.5) cylindrical panels.

Table 6(a—d) shows the first six frequency parameters. n* = o1/ (p/E) of thick cyl-
indrical panels with different shallowness angles. ¢ and 7 R,. having boundary conditions
of SS-CC, SS-SS. SS-CF and SS-FF, respectively. The angle of ¢ varies from 30° to 90°,
and /R, of 0.1. 0.2 and 0.4 are used. It is observed that the frequency parameters increase
with increment of 7' R,. and decrease with an increase in the shallowness angles. This is
attributed to the effect of thickness of cylindrical panels associated with the influence of
shear deformation. thickness deformation and in-plane inertia.

Lastly, Table 7 shows the effect of Poisson ratio. v. on the first six frequency parameters,
n* = wty/(p/E) of cylindrical panels (¢ =45 .1 R, = 0.2 L R = |.0and 2 = 1.22222) with
some boundary conditions. Poisson ratios of v = (.0, 0.15 and 0.3 are used. The frequency
parameters decrease with increment of Poisson ratio, and the effect of Poisson ratio on the
frequency parameters is significant for the cvlindrical panel with Iree edges.

4 CONCLUDING REMARKS

This paper presents an application of the sphne prism method based on the 3D-
elasticity theory to analyse the frequencies of 1sotropic. circular cylindrical thick panels
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Table 6. The first six frequency parameters. n* = wi,/(p/E) of cylindrical thick panels with some boundary
conditions along the circumferential edges; L/R. = .0and v = 0.3

(a) SS-CC
Mode
IR, e
(A= R.,R) @' r L 1 B | 2 3 4 5 6
0.1 30 0.191 0.1398  0.2349 0.3610  0.3795  0.4471 0.4506
(1.1053) 60 0.1 0.0955  0.09254 0.1398 0.1935  0.2349  0.2436  0.3188
90 0.0637  0.09557 0.09976  0.1398  0.1901 0.2016  0.2046
0.2 30 0.382 0.4533 0.6917 0.9049  0.9941 1.096 1.155
(1.2222) 60 0.2 0.191 0.2741 0.4533 0.5549  0.6857 0.6917  0.7276
90 0.127 0.2609  0.3134 04533  0.5382  0.5788  0.5853
0.4 30 0.765 1.240 1.687 1.844 2.202 2.360 2.580
(1.5000) 60 04 0.382 0.7346 1.240 1.327 1.412 1.418 1.687
90 0.255 0.6675 0.8645 1.148 1.240 1.297 1.323
(b) SS-SS
Mode
1R, -
(4= R,R) o (L I B 1 2 3 4 5 6
0.1 30 0.191 0.1258  0.2053 0.3211 0.3722  0.3757  0.4232
(1.1053) 60 0.1 0.0955  0.07099 0.1258 0.1546  0.1861 0.2053  0.2366
90 0.0637  0.07740 0.07883  0.1241 0.1258  0.1497  0.1651
0.2 30 0.382 04247  (.6443 0.7447 0.8472  0.9454 1.086
(1.2222) 60 0.2 0.191 0.2101 0.3726 0.4247  0.4741 0.5537  0.6443
90 0.127 0.1931 0.2485 0.2613 04247  0.4470 04768
04 30 0.764 1.198 1.476 1.680 1.685 2.166 2.312
(1.500) 60 0.4 0.382 0.6233  0.7463 1.110 1.198 1.287 1.476
90 (.253 0.4986  0.5298 0.7829  0.9560  0.9921 1.198
(c) SS-CF
Mode
(#=R,R) o r L 'R 1 2 3 4 S 6
0.1 30 0191 0.1042 0.1586 0.2557 0.3485 0.3569 0.3826
(1.1053) 60 0.1 0.0955  0.03851 0.1042 0.1070  0.1586  0.2036  0.2080
90 0.0637  0.04078 0.05208 0.1042  0.1087 0.1154  0.1586
0.2 30 0382 0.3601 0.5033 0.6986  0.7630  0.9932 1.043
(1.2222) 60 0.2 0.191 0.1224  0.3100 0.3601 0.4225  0.5034  0.6013
90 0.127 0.09827 0.1842 0.2914  0.3555  0.3589  0.3601
0.4 30 0.764 1.043 1.266 1.494 1.834 2.013 2.292
(1.5000) 60) 0.4 .382 0.3887  0.7612 0.9377 1.043 1.235 1.266
90 0.255 0.2650  0.5833 0.6875  0.7975  0.8958  0.9338
(d) SS-FF
Mode
(A= R,R) [0 t L 1B | 2 3 4 5 6
0.1 30 0.191 0.09717 0.1152 0.1780  0.2741 0.3291 0.3818
(1.1053) 60 0.1 0.0955  0.02218 0.03448  0.09717 0.1152  0.1227  0.1533
90 0.0637  0.007896 0.01385 0.04212 0.05789 0.09717 0.1092
0.2 30 0.3%2 0.3404  0.3910 0.5581 0.6530  0.7770  0.8266
(1.2222) 60 0.2 0.191 0.08509 0.1242 0.3150 03404 0.3626  0.3910
90 0.127 0.03090 0.05028 0.1573  0.2059  0.2264  0.3289
0.4 30 0.764 1.007 1.072 1.348 1.372 1.672 1.965
(1.5000) 60 0.4 0.382 0.3021 0.3709 0.6883  0.9791 1.007 1.072

90 (.255 0.1169  0.1551 0.4997  0.5224  0.6011 0.8254
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Table 7. The effect of Poisson ratio. v on frequency parameter. n* = i/ (p:E) of cylindrical panels; ¢ = 45 ,
LR =10.tR =02uand, = 12222

Mode
Boundary - ——
conditions i ! 2 3 4 S 6
SS-FF 0.0 L I8100 .253K2 1).49x24 0.5274% 0.65390 0.72708
0.13 017603 (0.23880 0.47184 0.49479 0.62921 0.69109
0.3 013729 0.203%9 ()4]1234 0.42289 0.55618 0.60113
S8-SS 0.0 029864 .39975 0.65714 0.73323 0.84988 0.96003
015 029015 (1.37886 () 39633 0.70629 0.77159 0.92083
0.3 0.26125 0.49676 051400 0.62920 0.64313 0.81546
S§8-CC 0.0 0.36626 0.69743 0.754494 0.94170 1.0096 1.0456
0.15 0.35196 (1.66496 (.72553 0.87187 0.96264 0.99847
0.3 0.31340 0.5%529 (.64470 0.74208 0.84703 0.88314

with the two opposite straight edges simply supported and the other two of some boundary
conditions. The effects of ratio of thickness to radius. ¢ R . ratio of length to radius, L/R,
and shallowness angle. ¢ on the frequency parameters are analysed, and the results are
compared with those calculated by the analytical method based on the 3D-elasticity theory
and by the spline strip method based on the first-order shear deformable Sanders’ shell
theory.

The main conclusions of the present work can be summarized as follows:

(1) The higher-order spline prism models show the highest efficiency on the rapid
convergence of frequencies.

(2) The frequency parameters of the circular ¢ylindrical panels are dependent on the
ratios of 1 R.. L R_. ¢ and boundary conditions.

(3) The present method can be used to predict the frequencies of both thick and thin
circular cylindrical panels.

(4) The results predicted by the first-order shear detormable Sanders” shell theory are
limited in use by the ratios of ¢ and L R of thick cylindrical panels.

(5) The frequency parameters of circular cylindrical thick panels with some boundary
conditions are presented in tabular form. and can serve to validate other methods
and finite ¢lement models.
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APPENDIX
The sub-matrices in eqns (18) are given as olows:

[Keo]l = (LD I A, = DS T A4, + DI 4,

L0 A e D LY DS A+ Do (1) Lo I AL
Kol = WLgD) D I DA+ Dy LIS A+ D (i LM T AL
Koyl = (LODYD (L @), S A+ (L) S I A,

+ DAL VL 4+ DL il L ALY
[Kp( ] = (LoD )ID (t LA T A 4 D (e DI T A+ Dy (/L T2 Ay}
(Ko ) = (LD Ly LY 104, + D1 T A+ DA (L) I 150 4,
[Kin] = (LoD Dt Atk @ DS A+ Dy L) LY Iy As )
[Kui ] = (LD D (1 LA (1 ¢yt "I A

DA QS A D T A
(Kui] = (LoD D LICE @) T8 A+ Dt LY @) I T A}
(Kuul = (LpDo)itt by L) I A+ D) T Ay

LA 1 A= B ALY LY T A0
and
(M, ] =tprr Loy g4, [M] =(pI:L¢){1,',’,f”'J,3“A V)
Myl = (o L) 170 g0 40
in which the integrals /2% and J!" are delined i<
" 1
= | NOGONSTO L IHT a=Dode = | NN da,

JO

where 7 and u are the order derivatives of' \, .12y and N, (7). and Cis the order of [&+1/(~—1)}. A4, s also given
by

A, =4, =05 4. =1 =UUr)y. A.=A.=—In and A, =4, =In



